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Abstract The storage of biased pattems is examined in neural networks with signson- 
strainFd synapses. Every neumn has outgoing synapses which are eithez all inhibitory or 
all excitatory. For random patterns stored in such networks, it is known that the presence 
of a discrete gauge symmetry makes the maximal storage capacity independent of the 
proportion of excitatory neurons to inhibitory neurons. When the stored patterns are biased, 
however, this discrete gauge symmetry is broken, with the result that the maximal capacity 
depends on the proportion of excitatory neurons to inhibitory ones. The dependence of the 
capacity on the fraction of excitatory neurons in tlie network, f, is calculated using the 
space of interactions approach. It is found that the storage capacity is maximal at f=O.5; 
this result is true regardless of the particular value of the bias in the stored patterns. The 
signi6cance of this result in the neurophysiological context is discussed. 

1. Inlxoduction 

Neural networks as models of associative memory have been considered seriously in 
recent years as viable models for understanding the organization of memories in biologi- 
cal systems. In addition, a detailed knowledge of the functioning of such networks 
would prove helpful in the construction of artificial neural networks with a good amount 
of control over how the information is stored and recovered associatively. 

In this paper, we shall consider a class of neural networks which model faithfully 
one of the observed properties of neurons in human brains, namely, that neurons in 
brains obey Dale’s law. This law simply says that neurons in brains have outgoing 
synapses which are either all excitatory or all inhibitory. In the context of &cia1 
neural networks, this means that the synaptic couplings wy, describing the intluence of 
neuron j on neuron i, have the same sign for all i, for k e d  j .  Such sign-constrained 
networks have been studied in the context of storing random patterns [I]. By writing 
down an appropriate constraint in the space of couplings w, one can evaluate the storage 
capacity of a sign-constrained network. In the case of unbiased patterns, there is a 
discrete gauge symmetry in the space of couplings which lets one choose the sign 
associated with every neuron arbitrarily. The capacity is independent of the associated 
sign distribution of the neurons in the network. 

This discrete gauge symmetry is broken, however, when the stored patterns are no 
longer random, but are biased. In that case, it is reasonable to expect that the number 
of k e d  points of the network depends on the distribution of inhibitory and excitatory 
neurons present. As we shall demonstrate, this is in fact the case. In the next section, 
we shall write down an appropriate measure in the space of couplings that will let us 
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determine the maximal capacity of biased patterns in sign-constrained networks. The 
saddle point evaluation of the entropy in interaction space (in the large N limit) gives 
a set of equations in the replica symmetric limit that must be solved to evaluate the 
capacity. The numerical solution of these equations is presented for various bias values 
of the stored patterns and for different proportions of inhibitory and excitatory neurons 
in the network. 

In the last section, we discuss the significance of our results, which we believe 
are of some relevance to the organization of neurons in brains, and end with some 
speculations. 

2. Sign-constrained synapses 

We shall consider a neural network consisting of N neurons in the large N limit, with 
p = a N  patterns stored as k e d  points of the network. The dynamical rule for the 
updating of the states st= f 1 of neurons in the network is the standard one, 

It is apparent that the fixed points of t h i s  dynamical rule satisfy 

si WVSi> 0. 

For the storage ofp patterns sP,  p = 1, . . . , p ,  a stronger characterization of fixed points 
is provided by 

which ensures a h i t e  radius of attraction for IC > 0 [2,3,4,5,6,7]. We can choose to 
normalize the U'S by enforcing the 'spherical' constraint 

Z 4 = N  
i 

for each row of the matrix of couplings. The signs of all the outgoing synapses from 
neuron j can be constrained to have the same sign gj= f 1 by requiring that giwg>O, 
for every i. Furthermore, we shall assume that a fraction of the neuronsfare excitatory; 
this means that 

gj= Ncf- (1 -f)) = r&J (2) 
i 

with r=2f- 1. 

tion factor, in the form [2, 31 
In the space ofcouplings w,, the partition function can be written, up to anormaliza- 

\ 
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where p[w] is an appropriate measure in  the^ space of couplings encoding the above 
constraints, and with the Hamiltonian 

N P  

i=1 & = I  
H [ ~ I =  c c e(r-fl[wi) (4) 

measuring the number of sites s which are not fixed points of the above dynamical 
evolution. In the limit when the inverse ‘temperature’ goes to inhity, P-tm, the 
partition function Z is just the fractional volume of zero energy states, n(0); therefore 

state, S=ln Q(0). The number of fixed points is maximized when the fractional volume 
of the zero energy states shrinks to zero. 

Without loss of generality, in order~to strictly impose Dale’s law, we shall assume 
that the 6rst N I  =fl neurons in the network are constrained to have only excitatory 
( g j = + l )  synapses, while the remaining N z = ( l  - f ) N  neurons have purely inhibitory 
(g,=-1) ones. The measure p[w] which encodes the above constraints can be written 
in the form. 

~ ~ the logarithm of 2 in this limit measures the v@metric entropy of the zero energy 

In the P -  limit, the term e-OH in Z reduces to a produce of step functions 

Since the constraints do not mix rows of the matrix w, the logarithm of the partition 

s= c ltl51, (6) 

with each 51, coming from one of the factors in 2. The quenched average entropy is 
given by averaging this expression over all possible different patterns {sf } . We shall 
assume that all the stored patterns have the same bias m; accordingly, the probability 
distribution of each s is 

function reduces to a sum, 
N 

, = I  

1 + m  I - m  
2 2 p(s)=-  8,l +- &,-I 

Introducing integral representations for ,the step functions and the delta functions 
in the usual manner, one can evaluate the quenched average above by using the standard 
replica trick, 

0 - 1 
(@I ai)> = lim 

n - ~  n 

Now we have 
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In the usual manner, one can introduce integral representations for the delta and 
theta functions in the above expression. Speciiically, we write 

dZ" 
2 K  

6(vPg) =s" dR" s - exp(iZ'(w'g- R")) 
0 -ca 

and 

where a is a replica index denoting the ath replica, and takes values from 1 to n. The 
product over j factorizes into two factors due to the sign constraints on the synapses, 
each of these factors occurring NI and N -  N I  times, respectively. In the l i t  N-r CO, 

after performing the average over patterns, we are left with an expression of the form 

1 
Xexp N a G l ( q d , M ~ ) + N G z ( F ~ b , E a s H ~ ~ ~ c  Fobgob (10) 1 o c b  

We shall write down the expressions for GI and GZ shortly. The N in the exponent 
comes from the factorization over the js. Here a is the normalized storage capacity 
p / N .  The order parameters qab and Mu arise from averaging over the biased patterns, 
and Fd and H" are additional order parameters which serve to enforce the delinitions 

and 

of the order parameters qeb and M", respectively, as delta-function constraints. They 
arise due to inserting unity in the forms 

for a<b, and 

dH" 

into the expression for { Q y ) .  
At this point one can already see that the discrete gauge invariance alluded to earlier 

is broken. For the case of random (m=O) pattems, given a particular realization of 
the g,s, a change in the sign of one of these, say gp-g i ,  can be compensated by a 
corresponding change in the sign of the j t h  bit, sj, of all the stored patterns [l]. However, 
in evaluating the quenched average over the patterns, the sJs are averaged over both 
possible values i~ 1, weighted equally over both. Consequently ((a> for random pat- 
terns is independent of the particular realization of the signs of the outgoing synapses 
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of each neuron {gj} .  This local gauge invariance is broken, however, when the stored 
patterns are biased, since the averaging procedure over the'spins sj now involves 
unequally weighting s,=+l and sj=-l. One therefore .expects, in general, that the 
entropy, and the storage capacity, would depend on the particular choice of the signs 
&. 

To simply the evaluation of the integrals, it helps to assume the replica symmetric 
forms F,=iF, q,=q, M"=M, E"=iE and H"=iH for the various order parameters, 
for all a and for b f a .  Then Gl(q,~ M )  is found to be [ Z ]  

- 

where the quantities rt are defined as 

1 
T* = 

(1 - q)"2 

and H( T ]  is the complementary error function H(z)  = Jr Dz, with the Gaussian measnre 
Dz 3 e-' &/&. 

The function G2 is determined by the constraints in the measure in the space of 
couplings, and is given by 

eN%=(L+)N'(L-)N-N1 (15) 

where 

where g, = f 1. Changing variables to 2" =f - Ha, the integral over the Z"'s in each 
of the factors above can be done and leaves us with the following integral over the 
R"'s: 

JOm ( 0-1  fi dR') 
Dz exp 

This integral factorizes into separate integrals over 'each of the R"'s. By changing 
variables to 

JFz + gH 
(2E+ F)'/' 

i =R(2E+F)1'2 - 

we obtain 
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where 

Here t t  =(zJF*H)/(2E+ F)'". 
The final expression for, GZ in the limit of small n is 

The functions P+(z)  and P-( z )  here are defined by 

and 

We note that for the case of unbiased patterns, the order parameter H does not 
exist, and the above expression for GZ reduces exactly to that given in [I] as it should. 

In the N+ 00 limit, the expression (10) for the quantity ((.Cl?>> can be evaluated in 
the saddle point approximation, when the argument of the exponent there takes its 
minimum value. Defining 

G=aG,(q, M )  + Gz(F, E, H )  +? qF 
2 

the saddle point equations for G are 

-0 
aG aG aG aG _=_=-=-- aq aF aE aM 

and 

aG -=O. 
aH 

The replica method, in the limit n+O, then yields the following expression for the 
entropy S: 

- = a J - - D z ( T  S 1 +m 1 -m m 

lnH(z-)+-lnH(z+) 
N2 2 

The maximum storage capacity is reached when this volumetric entropy diverges to 
negative infinity as the available volume in interaction space shrinks to zero. Corre- 

-1 We shall assume that, in this limit, F/(ZE+F)+oo and H - ~ o ,  ~ ~ ~ ~ ! + ~ ,  where k is a finite constant. This assumption will be justified by the 



Sign-constrained synapses and biased patterns in neural networks 6201 

consistency of our solution. In this limit, the saddle point relation (22) then gives the 
following equation for k: 

~ ~ 

k 

k- f J - k  Dz(z +k) + ( 1  - f )  I-, Dz(z- k) =O. (24) 
-m 

The order parameter M is determined from the condition aG/aM=O which gives 
the equation 

Correspondingly, the saddle point equations aG/aE=aG/aF= 0 yield the equations 

for - 111 

and 

1 
(2E+ F )  =- (l-q) ( I - A - w  

and 

(1-A-kE)' 1 F= 
(l+kZ-A) (1-4)' 

to leading order in (1 -q)-'. Here'we -we d e b &  the quantities 

-k 

DZ(Z +k)'+ ( 1  - f) 

-k k 

Dz(z+ k) + ( 1  -f) Dz(z-k) .  (29) L sm E=-f 

The maximum storage capacity is then determined by the saddle point condition 
aG/aq,=o, which gives 

(1 - A  - kE)' ' 1" Dz(z-s+)' = Dzfz-s-) + - -  ] (l+@-A) 

where we have defined 

mM- K 

(1 -m2)ID 
S- = 

and 

~ M + K  
s+= - (1 
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Figure 1. The storage capacity as a function off for K = O  and m=0.2, 0.5, 0.7 and 0.8; 
the upper curves are for the larger MIUCI of m. 

We have solved the above equations numerically for K = O  and for various values 
of m. These solutions for the capacity as a function of J the fraction of excitatory 
neurons, are shown in figure 1 for four different values of the pattem bias m. 

All the curves have a maximum when J the fraction of excitatory neurons in the 
network, is one half; this is independent of the value of the pattem bias m. It can be 
directly seen from the symmetry of (24) and (28), and the anti-symmetry of (29), under 
k-t-k,  simultaneously with an interchange offand (1 -f), thatf=$ is an extremum, 
since (30) for the storage capacity possesses this symmetry as well. 

For unbiased pattems, the maximal storage capacity a is 1 for networks with sign- 
constrained neurons [ I]. For patterns with small bias values, we find that the capacity is 
somewhat less than one. The maximum capacity of sign-constrained networks therefore 
initially decreases as the bias takes on a non-zero value; this is in contrast to the case 
of unconstrained networks, where the storage capacity increases continuously with an 
increase in the bias of the stored patterns. Owing to the invariance of the expression 
for the entropy under m+-m, the capacity depends only on the magnitude of the 
bias m. 

3. Discussion 

We see that sign-constrained networks can store biased pattems in an optimal manner 
when excitatory and inhibitory neurons are present in equal numbers. This is true for 
any non-zero value of the bias. For bias values large in magnitude, one would, at first 
sight, expect to find a maximal capacity when most of the neurons in a sign-constrained 
network are excitatory; this would easily ensure that for most neurons i, the stability 
factor s i x  w ~ s j  is a large positive number, since for large bias magnitudes the spins s 
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are either mostly positive or mostly negative (depending on whether the bias is positive 
or negative, respectively). However, a large positive value for this product would mean 
that these k e d  points are very strong attractors, with large basins of attraction, since 
it is known that larger values of the stability parameter correspond to larger basins of 
attraction [Z-71. Correspondingly, it is also well known that larger stability parameters 
in general yield smaller storage capacities. This heuristic argument shows that networks 
with predominantly ferromagnetic couplings when used to store highly (positively or 
negatively) biased patterns would actually have a relatively smaller number of attractors 
with large radii of attraction, and th is  is why the storage capacity is maximized not for 
values offclose to 1, but rather for an intermediate value of$ One expects values of 
fclose to one-half to permit the storage of a larger number of attractors with smaller, 
but non-zero, radii of attraction. It is not unreasonable to expect that the maximal 
capacity of patterns with any non-zero bias value in sign-constrained networks also 
corresponds to storing an optimal number of attractors with non-zero radii of 
attraction. 

In the neurophysiological context, a possible advantage of the presence of sign- 
constrained neurons in brains is therefore that such networks, when used to store biased 
memories, might be able to store a larger number of them as attractors (rather than 
just &xed points) with a linite attraction radius whenfin these networks is close to o n e  
half. However, we have obtained our results h r  the case when the threshold potentials of 
all the neurons in the network are zero. A more realistic study would have to relax this 
assumption, especially since it is known that the capacity of correlated memories can 
be enhanced by choosing thresholds appropriately [8 ] .  

It is also significant that the valuef=O.5 is optimal for all non-zero bias values; 
this would permit the simultaneous optimal storage of memories with varying bias 
values This is relevant considering that a large proportion of the memories biological 
systems store does in fact possess a signiscant amount of correlation. It is likely that 
new memories in sign-constrained networks can be stored by changing the magnitude 
of a relatively smaller number of synaptic strengths, without changing their signs; this 
would be advantageous biochemically as well. It would be interesting to investigate 
such issues by means of numerid simulations. Further analytical work along these 
directions is clearly also necessary before more definitive statements can be made. 
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